General non-commutative locally compact locally Hausdorff Stone duality
نویسندگان
چکیده
منابع مشابه
Non-commutative locally convex measures
We study weakly compact operators from a C∗-algebra with values in a complete locally convex space. They constitute a natural non-commutative generalization of finitely additive vector measures with values in a locally convex space. Several results of Brooks, Sâıto and Wright are extended to this more general setting. Building on an approach due to Sâıto and Wright, we obtain our theorems on no...
متن کاملA Hausdorff Topology for the Closed Subsets of a Locally Compact Non-hausdorff Space
In the structure theory of C*-algebras an important role is played by certain topological spaces X which, though locally compact in a certain sense, do not in general satisfy even the weakest separation axiom. This note is concerned with the construction of a compact Hausdorff topology for the space G(X) of all closed subsets of such a space X. This construction occurs naturally in the theory o...
متن کاملA Non-commutative Generalization of Stone Duality
We prove that the category of boolean inverse monoids is dually equivalent to the category of boolean groupoids. This generalizes the classical Stone duality between boolean algebras and boolean spaces. As an instance of this duality, we show that the boolean inverse monoid Cn associated with the Cuntz groupoid Gn is the strong orthogonal completion of the polycyclic (or Cuntz) monoid Pn. The g...
متن کاملArveson Spectrum On Locally Compact Hypergroups
In this paper we study the concept of Arveson spectrum on locally compact hypergroups and for an important class of compact countable hypergroups . In thiis paper we study the concept of Arveson spectrum on locally compact hypergroups and develop its basic properties for an important class of compact countable hypergroups .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2019
ISSN: 0001-8708
DOI: 10.1016/j.aim.2018.10.031